Variable selection for marginal longitudinal generalized linear models.
نویسندگان
چکیده
Variable selection is an essential part of any statistical analysis and yet has been somewhat neglected in the context of longitudinal data analysis. In this article, we propose a generalized version of Mallows's C(p) (GC(p)) suitable for use with both parametric and nonparametric models. GC(p) provides an estimate of a measure of model's adequacy for prediction. We examine its performance with popular marginal longitudinal models (fitted using GEE) and contrast results with what is typically done in practice: variable selection based on Wald-type or score-type tests. An application to real data further demonstrates the merits of our approach while at the same time emphasizing some important robust features inherent to GC(p).
منابع مشابه
Marginalized transition random effects models for multivariate longitudinal binary data
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, interpretation and computation of marginal covariate effects can be difficult. Heagerty has proposed marginally specified logistic-normal models (1999) and marginalized transition models (2002) for longitudinal binary and categorical data in which the marginal mean is ...
متن کاملA Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...
متن کاملGeneralized Additive Partial Linear Models for Clustered Data with Diverging Number of Covariates Using Gee
We study flexible modeling of clustered data using marginal generalized additive partial linear models with a diverging number of covariates. Generalized estimating equations are used to fit the model with the nonparametric functions being approximated by polynomial splines. We investigate the asymptotic properties in a “large n, diverging p” framework. More specifically, we establish the consi...
متن کاملVariable selection for generalized linear mixed models by L 1-penalized estimation
Generalized linear mixed models are a widely used tool for modeling longitudinal data. However , their use is typically restricted to few covariates, because the presence of many predictors yields unstable estimates. The presented approach to the fitting of generalized linear mixed models includes an L 1-penalty term that enforces variable selection and shrinkage simultaneously. A gradient asce...
متن کاملAutomatic Variable Selection for High-Dimensional Linear Models with Longitudinal Data
High-dimensional longitudinal data arise frequently in biomedical and genomic research. It is important to select relevant covariates when the dimension of the parameters diverges as the sample size increases. We consider the problem of variable selection in high-dimensional linear models with longitudinal data. A new variable selection procedure is proposed using the smooth-threshold generaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 61 2 شماره
صفحات -
تاریخ انتشار 2005